Химия - Анаэробное окисление метана

01 марта 2011


Оглавление:
1. Анаэробное окисление метана
2. Распространение и экологическое значение
3. История изучения



процесс окисления метана до углекислого газа, производимый некультивируемыми археями групп ANME-1, ANME-2 и ANME-3, близкими к Methanosarcinales, в ассоциации с сульфатредуцирующими и денитрифицирующими бактериями при отсутствии в среде молекулярного кислорода. Биохимия и распространённость процесса в природе изучены пока недостаточно.

Механизм процесса

Консорция микроорганизмов

Уже в первых работах, посвящённых процессу, было показано, что абиотически окисляется лишь 0,7-1,1 % всего окисляемого объёма метана. Также установлено, что ингибиторы метаногенеза 2-бромэтансульфоновая кислота и флуорацетат, а также ингибитор сульфатредукции молибдат угнетают и анаэробное окисление метана. При этом последний более чувствителен к 2-бромэтансульфоновой кислоте, чем сам метаногенез, из-за чего при небольших концентрациях кислоты она даже оказывает кажущийся стимулирующий эффект на образование метана.

Из этого было сделано заключение о протекании анаэробного окисления метана в два этапа, осуществляемых разными организмами. Первый – окисление метана водой, осуществляемое ферментами метаногенеза, катализирующими обратные реакции. Второй – дальнейшее окисление продуктов первого этапа, с использованием сульфидов в качестве акцептора электрона.

Ингибитором анаэробного окисления метана также является кислород: в образцах донных осадков, где отсутствуют аэробные метанотрофы, при проветривании прекращается всякое окисление метана. Лишь с исчерпанием кислорода в среде оно начинает восстанавливаться.

Благодаря тому что в холодных сипах метан обеднён C, вещества, синтезированные из него, также обеднены этим изотопом. Были изучены бедные C липиды и нуклеиновые кислоты, выделенные из донных отложений, и проведены исследования в области геносистематики потребляющих метан в анаэробных условиях организмов. Было показано, что среди них действительно есть родственные метаногенам порядка Methanosarcinales археи, отнесённые к группам ANME-1 и ANME-2, и эубактерии-сульфатредукторы. Впоследствии с использованием метода FISH удалось увидеть клетки этих организмов. Они образовывали компактные конгломераты, состоящие в среднем из 100 архей и 200 эубактерий и имеющие диаметр около 3 мкм.

Помимо тесного родства архей ANME метаногенам, доводом в пользу проведения ими обратного метаногенеза стало обнаружение у них генов метил-CoM-редуктазы и ещё ряда ферментов образования метана.

Проблема межвидового интермедиата

На каких продуктах реакции обратного метаногенеза завершаются неизвестно. Видимо часть их превращается в ацетил-КоА и ассимилируется организмом, о чём свидетельствует включение изотопа C в состав микробных биомаркеров. Другая часть поступает во внешнюю среду и усваивается сульфатредукторами, используясь ими затем также в процессах и анаболизма, и катаболизма. Какое соединение выступает в роли межвидового интермедиата неизвестно. На его роль предлагались молекулярный водород, уксусная кислота, метанол, муравьиная кислота, НАД и ФАД. Ни для одного из этих веществ пока не было получено экспериментальных доказательств участия в процессе. Кроме того, термодинамические расчёты свидетельствуют, что водород, ацетат и метанол межвидовыми интермедиатами являться не могут.

Окисление метана с использованием иных акцепторов электрона

Показана возможность протекания анаэробного окисления метана с участием соединений азота. Процесс в этом случае осуществляла консорция клеток ANME-2 и денитрификаторов, причём последние предпочитали нитрит нитратам. При удалении нитрита через 10-20 часов окисление метана возобновлялся уже с участием нитратов. Прямые наблюдения с помощью техники FISH показали, что соотношение в консорции бактерий и архей составило 8:1. Авторы считают, что это свидетельствует о более высоком энергетическом выходе по сравнению с сульфатами.

Для Fe в нескольких работах утверждается неучастие в анаэробном окислении метана, хотя в других показан его стимулирующий эффект на поглощение метана в анаэробных условиях.

Возможность анаэробного окисления метана одним организмом

Существует гипотеза наличия одного организма, проводящего процесс от начала до конца по совершенно особому механизму. В её пользу говорят данные, что в некоторых субстратах ни один из ингибиторов метаногенов и сульфатредукторов не подавляет анаэробного окисления метана.

Были обнаружены клетки ANME-2, а затем ANME-1 и ANME-3, физически не связанные с сульфатредукторами, свободноживущие, образующие микроколонии, либо конгломераты клеток с эубактериями, не являющимися сульфатредукторами. Эти организмы теоретически могли бы проводить окисление метана самостоятельно, без участия эубактериального партнёра.

Было обнаружено окисление метана чистыми культурами при анаэробном росте. Метаногены, строгие анаэробы, в особенности такие как Methanobacterium thermoautotrophicum, Methanosarcina barkeri, Methanosarcina acetivorans и Methanospirillum hungatii, способны при росте на обычных средах для культивирования метаногенов, окислять введённый в газовую фазу меченый CH4 до CO2, иногда до метанола и ацетата в небольших количествах.

Многие сульфатредукторы могут соокислять небольшое количества метана при анаэробном росте на других субстратах. Из них в данном отношении наиболее интересны Archeoglobus, имеющие часть ферментов метаногенеза и родственные ANME-1. Проведённые на них исследования, однако, показали отсутствие окисления даже следовых количеств метана. Следует учитывать, что в некоторых работах по сульфатредукторам окисление метана может представлять собой артефакт, вызванный недостаточной чистотой использованного метана, содержащего угарный газ, который и окислялся бактериями.

В любом случае, метанокисляющая активность метаногенов и сульфатредукторов слишком низка, чтобы объяснить с её помощью те объёмы окисляемого метана, о которых свидетельствовали геохимические данные.



Просмотров: 4127


<<< Альтернативная биохимия
Ангиотензин-превращающий фермент >>>