Химия - Карбид кремния - Использование

28 февраля 2011


Оглавление:
1. Карбид кремния
2. Формы нахождения в природе
3. Производство
4. Структура и свойства
5. Использование



Абразивные и режущие инструменты

Режущие диски из карбида кремния

В современной гранильной мастерской карбид кремния является популярным абразивом из-за его прочности и низкой стоимости. В обрабатывающей промышленности из-за его высокой твердости он используется в абразивной обработке в таких процессах как шлифование, хонингование, водоструйная резка и пескоструйная обработка. Частицы карбида кремния ламинируются на бумагу для создания шлифовальной шкурки.

В 1982 году случайно был обнаружен композит, состоящий из оксида алюминия и карбида кремния, кристаллы которого растут в виде очень тонких нитей .

Структурные материалы

Карбид кремния используется во внутренней пластине баллистических бронежилетов

В 1980-х и 1990-х годах карбид кремния изучался в ряде научно-исследовательских программ в США, Японии и Европе для использования в высокотемпературных газовых турбинах. Компоненты были призваны заменить некоторые детали никелевых жаропрочных турбин. Тем не менее, ни один из этих проектов не привел к промышленному производству, в основном из-за низкого сопротивления ударам и низкой ударной вязкости карбида кремния .

Как и другие жесткие керамики, карбид кремния используется в композитной броне и в качестве керамической пластины в пуленепробиваемых жилетах. Тип бронежилета «Кожа дракона», созданный компанией Pinnacle Armor, использует диски из карбида кремния .

Автомобильные запчасти

Углерод-керамические дисковые тормоза Porsche Carrera GT

Инфильтрованый кремний в материале «композит углерод-углерод» используется для производства высококачественных «керамических» дисковых тормозов, так как способен выдерживать экстремальные температуры. Кремний вступает в реакцию с графитом в «композите углерод-углерод» становясь армированным углеродным волокном карбида кремния. Диски из этого материала используются на некоторых спортивных автомобилях, в том числе Porsche Carrera GT, Bugatti Veyron, Chevrolet Corvette ZR1, Bentley, Ferrari, Lamborghini. Карбид кремния используется также в спеченных формах в дизельных фильтрах для очистки от твердых частиц.

Электроника

Первыми электрическими системами из SiC были молниеотводы в электроэнергетических системах. Эти устройства должны были обладать высоким сопротивлением до тех пор пока напряжение между ними не достигнет определенного порогового значения VT, после чего их сопротивление должно упасть до более низкого уровня и поддерживать этот уровень, пока приложенное напряжение падает ниже VT.

Электронные приборы

Ультрафиолетовый светодиод

Карбид кремния используется в сверхбыстрых высоковольтных диодах Шоттки, N-МОП-транзисторах и в высокотемпературных тиристорах. По сравнению с приборами на основе кремния и арсенида галлия приборы из карбида кремния имеют следующие преимущества:

  • в несколько раз большая ширина запрещённой зоны;
  • в 10 раз большая напряженность поле электрического пробоя;
  • высокие допустимые рабочие температуры;
  • теплопроводность в 3 раза больше, чем у кремния, и почти в 10 раз больше, чем у арсенида галлия;
  • устойчивость к воздействию радиации;
  • стабильность электрических характеристик при изменении температуры и отсутствие дрейфа параметров во времени.

Из почти двухсот пятидесяти модификаций карбида кремния только две применяются в полупроводниковых приборах — 4H-SiC и 6H-SiC.

Проблемы с интерфейсом элементов основанных на диоксиде кремния препятствуют развитию N-МОП-транзисторов и IGBT, основанных на карбидокремнии. Другая проблема заключается в том, что сам SiC пробивается при высоких электрических полях в связи с образованием цепочек дефектов упаковки, но эта проблема может быть решена совсем скоро .

История светодиодов из SiC весьма примечательна: первые светодиоды с использованием SiC были продемонстрированы в 1907 году. Первые коммерческие светодиоды были также на основе карбида кремния. Желтые светодиоды из 3C-SiC были изготовлены в Советском Союзе в 1970-х годах, а синие по всему миру в 1980-х . Производство вскоре остановилось, потому что нитрид галлия показал в 10-100 раз более яркую эмиссию. Эта разница в эффективности связана с неблагоприятной непрямой запрещенной зоной SiC, в то время как нитрид галлия имеет прямую запрещенную зону, которая способствует увеличению интенсивности свечения. Тем не менее, SiC по прежнему является одним из важных компонентов светодиодов — это популярная подложка для выращивания устройств из нитрида галлия, также он служит теплораспределителем в мощных светодиодах.

Астрономия

Низкий коэффициент теплового расширения, высокая прочность, жесткость и теплопроводность делает карбид кремния нужным материалом для зеркал в астрономических телескопах. Развитие технологий позволило создавать диски поликристаллического карбида кремния до 3,5 метров в диаметре. Заготовки зеркала формируются из чистого мелкого порошка карбида кремния под высоким давлением. Несколько телескопов уже оснащены оптикой из карбида кремния.

Пирометрия

Изображения теста пирометрии. Высота пламени 7 см

Волокна из карбида кремния используются для измерения температуры газов оптическим методом, называемым тонкой пирометрией накаливания. При измерении тонкие нити из карбида кремния вводят в зону измерения. Волокна практически не влияют на процесс горения, а их температура близка к температуре пламени. Таким методом может быть измерена температура в диапазоне 800—2500 K.

Элементы нагревания

Ссылки на то, что карбид кремния использовался в нагревательных элементах существуют с начала 20-го века, когда они были изготовлены The Carborundum Company в США и EKL в Берлине. Карбид кремния помог увеличить рабочую температуру по сравнению с металлическими нагревателями. Элементы из карбида кремния используются сегодня при плавлении цветных металлов и стекла, при термической обработке металлов, флоат-стекла, при производстве керамики, электронных компонентов и т. д.

Элементы ядерного топлива

Карбид кремния часто используется в качестве слоя из триструктурально-изотропного покрытия для элементов ядерного топлива в высокотемпературных газовых реакторах или в очень высокотемпературных реакторах. Карбид кремния обеспечивает механическую устойчивость к топливу и является основным барьером для диффузии продуктов деления.

Ювелирные изделия

Кольцо с муассанитом

Чаще всего он использовался в качестве абразива, но в последнее время можно найти применение данного вещества и в качестве полупроводника или как имитатор алмаза ювелирного качества

Как ювелирный камень карбид кремния используется в ювелирном деле: называется «синтетический муассанит» или просто «муассанит». Муассанит похож на алмаз: он прозрачен и тверд, с показателем преломления 2,65—2,69. Муассанит имеет несколько более сложную структуру, чем обычный кубический диоксид циркония. В отличие от алмаза, муассанит может иметь сильное двулучепреломление. Это качество является желательным в некоторых оптических конструкциях, но только не в драгоценных камнях. По этой причине муассанитовые драгоценности разрезают вдоль оптической оси кристалла, чтобы свести к минимуму эффект двупреломления. Муассанит имеет более низкую плотность 3,21 г/см³ и гораздо более устойчив к теплу. В результате получается камень с большим блеском минерала, с четкими гранями и хорошей устойчивостью к внешним воздействиям. В отличие от алмаза, который горит при температуре 800 °C, муассанит остается неповрежденным вплоть до температуры в 1800 °C. Муассанит стал популярен как заменитель алмаза, и может быть ошибочно принят за алмаз, так как его теплопроводность гораздо ближе к алмазу, чем у любого другого заменителя бриллианта. Драгоценный камень можно отличить от алмаза с помощью его двулучепреломления и очень небольшой зеленой или желтой флуоресценции в ультрафиолетовом свете .

Производство стали

Карбид кремния выступает в качестве топлива для изготовления стали в конвертерном производстве. Он чище чем уголь, что позволяет сократить отходы производства. Также может быть использован для повышения температуры и регулирования содержания углерода. Использование карбида кремния стоит меньше и позволяет производить чистую сталь из-за низкого уровня содержания микроэлементов, по сравнению с ферросилицием и сочетанием с углеродом.

Катализатор

Естественная резистентность карбида кремния к окислению, а также открытие новых путей синтеза кубической формы β-SiC с большей площадью поверхности, приводит к большому интересу в использовании его в качестве гетерогенного катализатора. Эта форма уже использовалась в качестве катализатора при окислении углеводородов, таких как н-бутан, малеиновый ангидрид.

Производство графена

Карбид кремния используется для производства графена с помощью графитизации при высоких температурах. Это производство рассматривается как один из перспективных методов синтеза графена в больших масштабах для практических применений.



Просмотров: 15058


<<<