Химия - Полупроводниковые материалы

28 февраля 2011


Оглавление:
1. Полупроводниковые материалы
2. Основные электрофизические свойства
3. Получение
4. Легирование
5. Структурные дефекты
6. Применение



вещества с чётко выраженными свойствами полупроводников в широком интервале температур, включая комнатную, являющиеся основой для создания полупроводниковых приборов. Удельная электрическая проводимость σ при 300 К составляет 10−10 Ом·см и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям, а также к содержанию структурных дефектов и примесей.

Структура

Полупроводниковые материалы по структуре делятся на кристаллические, твёрдые, аморфные и жидкие.

Кристаллические полупроводниковые материалы

Наибольшее практическое применение находят неорганические кристаллические полупроводниковые материалы, которые по химическому составу разделяются на следующие основные группы.

  • Элементарные полупроводники: Ge, Si, углерод, В, α-Sn, Те, Se. Важнейшие представители этой группы — Ge и Si имеют кристаллическую решётку типа алмаза. Являются непрямозонными полупроводниками; образуют между собой непрерывный ряд твёрдых расплавов, также обладающих полупроводниковыми свойствами.
  • Соединения типа AB элементов III и V группы периодической системы имеют в основном кристаллическую структуру типа сфалерита. Связь атомов в кристаллической решётке носит преимущественно ковалентный характер с некоторой долей ионной составляющей. Плавятся конгруэнтно. Обладают достаточно узкой областью гомогенности, то есть интервалом составов, в котором в зависимости от параметров состояния преимуществ. тип дефектов может меняться, а это приводит к изменению типа проводимости и зависимости удельной электрической проводимости от состава. Важнейшие представители этой группы: GaAs, InP, InAs, InSb, GaN, являющиеся прямозонными полупроводниками, и GaP, AlAs — непрямозонные полупроводники. Многие полупроводниковые материалы типа АВ образуют между собой непрерывный ряд твёрдых расплавов — тройных и более сложных, также являющихся важными.
  • Соединения элементов VI группы с элементами I—V групп периодической системы, а также с переходными металлами и РЗЭ. В обширной группе этих полупроводниковых материалов наибольший интерес представляют соединения типа AB с кристаллической структурой типа сфалерита или вюрцита, реже типа NaCl. Связь между атомами в решётке носит ковалентно-ионный характер. Имеют большую, чем у полупроводниковых материалов типа AB, протяженность области гомогенности. Для соединений типа AB характерен полиморфизм и наличие политипов кубической и гексагональной модификаций. Являются в основном прямозонными полупроводниками. Важнейшие представители этой группы полупроводниковых материалов — CdTe, CdS, ZnTe, ZnSe, ZnO, ZnS. Многие соединения типа AB образуют между собой непрерывный ряд твёрдых расплавов, характерными представителями которых являются CdxHg1-xTe, CdxHg1-xSe, CdTexSe1-x. Физические свойства соединений типа AB в значительной мере определяются содержанием собственных точечных дефектов структуры, имеющих низкую энергию ионизации и проявляющих высокую электрическую активность.
  • Тройные соединения типа ABC2 кристаллизуются в основном в решётке халькопирита. Обнаруживают магнитное и электрическое упорядочение. Образуют между собой твёрдые расплавы. Во многом являются электронными аналогами соединений типа АВ. Типичные представители: CuInSe2, CdSnAs2, CdGeAs2, ZnSnAs2.
  • Карбид кремния SiC — единственное химическое соединение, образуемое элементами IV группы. Обладает полупроводниковыми свойствами во всех структурных модификациях: β-SiC; α-SiC, имеющая около 15 разновидностей. Один из наиболее тугоплавких и широкозонных среди широко используемых полупроводниковых материалов.

Некристаллические полупроводниковые материалы

Типичными представителями этой группы являются стеклообразные полупроводниковые материалы — халькогенидные и оксидные. К первым относятся сплавы Tl, P, As, Sb, Bi с S, Se, Те, характеризующиеся широким диапазоном значений удельной электрической проводимости, низкими температурами размягчения, устойчивостью к кислотам и щелочам. Типичные представители: As2Se3-As2Te3, Tl2Se-As2Se3. Оксидные стеклообразные полупроводниковые материалы имеют состав типа V2O5-P2O5-ROx и характеризуются удельной электрической проводимостью 10−10 Омсм. Все стеклообразные полупроводниковые материалы имеют электронную проводимость, обнаруживают фотопроводимость и термоэдс. При медленном охлаждении обычно превращаются в кристаллические полупроводниковые материалы. Другим важным классом некристаллических полупроводниковые материалы являются твёрдые расплавы ряда аморфных полупроводников с водородом, так называемые гидрированные некристаллические полупроводниковые материалы: a-Si:H, a-Si1-xCx:H, a-Si1-xGex:H, a-Si1-xNx:H, a-Si1-xSnx:H. Водород обладает высокой растворимостью в этих полупроводниковых материалах и замыкает на себя значительное количество «болтающихся» связей, характерных для аморфных полупроводников. В результате резко снижается плотность энергетических состояний в запрещенной зоне и появляется возможность создания р-n-переходов. Полупроводниковыми материалами являются также ферриты, сегнетоэлектрики и пьезоэлектрики.



Просмотров: 9268


<<< Полупроводник n-типа