Химия - Стеклянный электрод - Натриевая функции стеклянных электродов

01 марта 2011


Оглавление:
1. Стеклянный электрод
2. Свойства стеклянных электродов и обзор теорий
3. Натриевая функции стеклянных электродов
4. Доказательство наличия натриевой функции у стеклянных электродов
5. Теория стеклянного электрода в свете результатов опытов
6. Электродные свойства стёкол и некоторые данные о поверхностных плёнках на них
7. Практическое значение стеклянных электродов с натриевой функцией в нейтральных и слабокислых растворах



Доказательство НФ обычных СЭ, применяемых для определения pH, тесно связано с вопросом о поведении их в щелочных растворах. Было показано, что в области сильнощелочных растворов кривые зависимости ЭДС от pH для элементов составленных из стеклянного и каломельного электродов, проходит через максимум. Максимум на кривых E=f появляется в том случае, когда в растворах одновременно с ростом pH увеличивается и концентрация ионов щелочных металлов. Такой ход кривой свидетельствует о том, что после достижения максимума в сильнощелочных растворах по мере увеличения концентрации ионов щелочных металлов потенциал СЭ принимает всё более положительное значение подобно соответствующему металлическому электроду. При этом установлено, что его потенциал в первом приближении изменяется пропорционально логарифму концентрации ионов щелочного металла. Таким образом, можно было притти к заключению, что СЭ ведёт себя подобно электроду, обратимому по отношению к ио-нам щелочных металлов. Однако это заключение обосновано лишь качественно, а не количественно. К сказанному относительно поведения СЭ из обычных электродных стёкол следует добавить, что в литературе можно встретить указания на плохую воспроизводимость значений ЭДС в щелочных растворах и сомнения в том, что СЭ ведут себя как вполне обратимые электроды в таких растворах.

Значительно полнее исследовано влияние изменение концентрации ионов щелочных металлов на потенциал СЭ, изготовленных из таких стёкол, которые проявляют электродную функцию лишь в достаточно кислых растворах.

В работах Горовица с сотрудниками и Шиллера подробно исследована зависимость потенциала СЭ от концентрации ионов щелочных и некоторых других металлов. Было замечено, что десятикратное изменение концентрации ионов щелочных металлов при определённых условиях может изменять потенциал СЭ по отношению к каломельному полуэлектроду на 50-55 мв. Если не принимать во внимание изменения коэффициентов активности ионов в растворах и диффузионных потенциалов элементов, то при наличии функции металлических электродов десятикратное изменение концентрации соответствующих ионов должно вызывать изменение потенциала электрода на 58 мв. Как видно, расхождение между опытными данными и теоретическими не очень большое, что и послужило основанием для предположения о наличии функций металлических электродов у стекла. Тем не менее, опыты Горовица и Шиллера не являются строгим доказательством этого предположения. Горовитц и Шиллер не сравнивали поведение в растворах стеклянных и соответствующих металлических электродов. Это, прежде всего, и не позволило дать авторам строгое и точное доказательство. Кроме того, в обсуждаемой работе изучалось поведение СЭ в элементах с диффузионными потенциалами. Для того чтобы строго судить о наличии натриевой функции у СЭ по данным ЭДС элемента с диффузионным потенциалом, необходимо знать зависимость этого потенциала и активности отдельных ионов от состава раствора. До поры не было известно точное выражение этой зависимости.

И наконец, Горовиц и Шиллер не принимали во внимание, что изменение солевого состава растворов приводит к изменению значения pH растворов. Поэтому на основании экспериментальных данных, полученных авторами, нельзя было ответить на вопрос, связано ли всецело изменение потенциала СЭ с их металлической функцией и не вызывается ли оно также изменением pH при сохранении отчасти и водородной функции у СЭ.

На основе опытов Горовица Урбан и Штейнер предприняли попытку применить СЭ для анализа растворов на содержание в них ионов натрия в присутствии ионов калия. По утверждению авторов их метод анализа растворов может давать результаты с точностью до 3 %. Хотя эта работа и представляет некоторый шаг вперёд, однако и в ней, в основном по тем же причинам, НФ СЭ не была строго доказана.

В некоторых работах, которые были специально посвящены исследованию металлической функции СЭ, содержатся данные, имеющие существенное значение для решения данного вопроса. Исследование простых по составу стёкол позволило К. С. Евстропьеву и Н. В. Суйковской получить интересные выводы относительно влияния химического состава стекла на его электродные свойства. Например, в этой работе было установлено, что добавки окиси бора к стеклу, содержащему окись натрия и кремнезём, сужая область водородной функции СЭ, вместе с тем придаёт им способность отвечать на изменение концентрации ионов щелочных металлов в растворах. Однако в работе К. С. Евстропьева и Н. В. Суйковской так же, как и в других работах, исследовались элементы с диффузионными потенциалами, не принимались во внимание коэффициенты активности и не было осуществлено непосредственное сравнение поведения стеклянных и металлических электродов. Поэтому все критические замечания, высказанные в отношении работ Горовица, имеют значение и здесь.

В работе Лендиеля и Блюма также показано, что электроды из боро- и алюмосиликатных стёкол не проявляют себя в полной мере как водородные электроды даже в кислых растворах, но отзываются на изменение концентрации ионов натрия в растворах. Экспериментальные данные, приводимые авторами, выявляют лишь самый общий характер электродной функции, показывая, что десятикратное изменение концентрации ионов натрия в растворах изменяет потенциал СЭ на 40-50 мв.

Тенделоо исследовал возможность изменения различных минералов и стёкол для изготовления электродов, обратимых по отношению к ионам щелочных и щелочноземельных металлов. Опыты с электродами из минералов не привели к положительным результатам. В методическом отношении работа Лендиеля и Блюма и исследования Тенделоо ничем существенным не отличаются от обсуждавшихся выше. Названные авторы, следовательно, также не дали строгого доказательства НФ СЭ.

Первая попытка более точного изучения НФ СЭ была предпринята Б. П. Никольским и Т. А. Толмачёвой. В их работе отчётливее показано, как одни и те же СЭ, по мере изменения состава растворов, переходят от водородной к натриевой функции.

Для того чтобы более строго судить, соответствуют ли изменения потенциала СЭ функции натриевых электродов, были приняты во внимание изменения коэффициентов активности ионов натрия в растворах. Значения последних принимались численно равными средним коэффициентам активности электролитов, в которые входят ионы натрия. Расчёты показали, что зависимость потенциала СЭ от логарифма активности ионов натрия в растворе близка к линейной. Наклон прямых близок к теоретическому.

Однако рассмотренная выше нормировка коэффициентов активности ионов была принята произвольно, а поэтому доказательство НФ СЭ, данное в этой работе, не может считаться совершенно строгим. К тому же в работе Б. П. Никольского и Т. А. Толмачёвой, как и во всех других, не учитывалось изменение диффузионного потенциала.

Можно сказать, что в перечисленных выше работах НФ СЭ показана с точностью 5 мв на единицу pNa.. Очевидно в силу того, что предположение о наличии НФ у СЭ не было доказано достаточно строго, могли появиться работы, в которых оспаривается это предположение. Так, в серии работ Хаббарда с сотрудниками доказывается, что наличие водородной функции у СЭ, изготовленных из различных по составу стёкол, всегда можно связать с образованием в поверхностных слоях стекла особой плёнки, состоящей из набухающего геля кремнекислоты. Кроме того, показывается, что отклонение от водородной функции по мере перехода к щелочным растворам связано с разрушением этой плёнки, с уменьшением её толщины.

Не высказывая никаких определённых соображений относительно того, как может влиять толщина поверхностной плёнки на потенциал СЭ, авторы отрицают наличие какой-либо определённой функции у СЭ в таких растворах, где они не ведут себя в полной мере как водородные электроды. Хаббард с сотрудниками опровергает предположение о переходе СЭ к НФ на том основании, что десятикратное изменение концентрации ионов натрия в растворе, по их данным, в некоторых случаях вызывает слишком большое изменение потенциала СЭ.

Действительно, если изменения меньше, чем 59 мв на единицу pNa, можно объяснить неполным переходом от водородной к натриевой функции, то такие изменения, которые значительно превосходят теоретические, казалось бы, ставят под сомнение справедливость предположения о наличии НФ у СЭ. Однако авторы допускают серьёзную ошибку при обработке собственных экспериментальных данных.

В рассматриваемых работах производились измерения ЭДС гальванических элементов, в которых оба электрода, исследуемый стеклянный и вспомогательный, находились в одном и том же растворе. Изменения ЭДС такого элемента при переходе от одной концентрации раствора к другой связаны с изменением потенциала обоих электродов. Авторы ошибочно относят все изменения ЭДС элемента к изменению потенциала исследуемого СЭ, а поэтому и получают слишком большие значения. Если экспериментальные данные Хаббарда рассчитать с учётом этого обстоятельства, то оказывается, что изменения потенциала СЭ во всех случаях не превосходит 59 мв на единицу pNa. Следовательно, работами Хаббарда не опровергается предположение о НФ СЭ. Тем не менее, появление этих работ свидетельствует, что НФ СЭ не доказана также убедительно, как их ВФ.

Вшеизложенное позволяет сделать следующие выводы.

Многими работами показано, что в растворах, где СЭ не проявляют себя как водородные электроды, потенциал их может зависеть от концентрации ионов щелочных металлов. Характер этой зависимости согласуется с предположением о появлении у СЭ при определённых условиях функции металлических электродов. Но до настоящего времени это предположение не было проверено достаточно точным и строгим экспериментальным методом. В работах по исследованию НФ СЭ не было произведено непосредственное сравнение поведения стеклянных и натриевых электродов. Также не сравнивалось поведение СЭ в растворах с поведением других металлических электродов. В работах обычно использовались элементы с диффузионными потенциалами, что помимо неопределённости, вносимой изменениями этих потенциалов при переходе от одних растворов к другим, не позволяло проводить достаточно строгие расчёты с использованием коэффициентов активности электролитов. В большинстве работ изменения коэффициентов активности и не учитывалось. По тем же причинам не была достаточно строго исследована зависимость поведения СЭ от состава растворов в переходной области от водородной к натриевой функции.

Между тем, для дальнейшего развития теории СЭ и расширения области его применения, так же, как для решения некоторых вопросов химии стекла и теории обмена ионов, необходимо было иметь данные о влиянии состава растворов на электродные свойства стёкол, полученные достаточно строгими экспериментальными методами. В частности, требовалось окончательно решить вопрос о наличии функции металлических электродов у стёкол. В этом и состояла основная задача новых исследований.

Анализ ранее опубликованных работ показывал путь экспериментального решения поставленной задачи. Прежде всего следовало произвести непосредственное сравнение поведения в растворах стеклянных и натриевых электродов. Затем — изучить поведение СЭ в переходной области, применяя элементы без диффузионных потенциалов.

Для решения ряда теоретических и практических задач желательно было описанным выше методом произвести исследование электродных свойств стёкол, различных по своему химическому составу.



Просмотров: 6727


<<< Судан (краситель)