Химия - Теория отталкивания электронных пар - Недостатки теории ОЭПВО и отклонения от ее предсказаний

28 февраля 2011


Оглавление:
1. Теория отталкивания электронных пар
2. Развитие теории ОЭПВО и примеры
3. Недостатки теории ОЭПВО и отклонения от ее предсказаний
4. Основной источник



Как и всякая приближенная теория, основанная на той или иной модели, теория ОЭПВО сталкивается с рядом трудностей, предопределенных недостатками модели, лежащей в ее основе. Укажем на некоторые из них.

1 Как было отмечено в предыдущих разделах, теория приложима к описанию строения молекул только непереходных элементов, то есть элементов, не имеющих не полностью заполненные внутренние электронные оболочки. Дело в том, что наличие таких оболочек, например d-электронов в атомах переходных элементов, приводит к отклонениям от сферической симметрии распределения электронов остова. Это, в свою очередь, ведет к тому, что распределение облаков электронных пар в пространстве относительно центрального атома не подчиняется точно соотношению. Эти отклонения особенно заметны при значительном количестве электронов в d-оболочках переходных элементов.

2 Участие d-орбиталей в связях, образуемых элементами низших периодов, также приводит к отклонениям от ожидаемой на основании представлений теории ОЭПВО геометрии. Хорошо известным примером являются угловые искажения молекул галогенидов щелочноземельных металлов. Эти отклонения иллюстрируются в табл. 6.

Таблица 6. Конфигурация связей в молекулах галогенидов щелочноземельных металлов МХ2

F Cl Br I
Be л л л л
Mg у л л л
Ca у л л л
Sr у у л л
Ba у у у у

Причины этих отклонений вызваны изменениями в типе орбиталей центрального атома, образующих связи с галогенами, переходом от sp-типа к sd-типу по мере возрастания порядкового номера элемента и электроотрицательности лиганда. Теория ОЭПВО в отличие от представлений ЛМО и теории гибридизации АО не учитывает прямо тип орбиталей электронных пар, что и не позволяет учесть отдельные тонкие различия.

3 В соединениях типа АХ6Е и других с высоким координационным числом центрального атома неподеленная электронная пара является стереохимически инертной и структура соответствует конфигурации, получаемой без учета электронной пары Е. Так, анионы SbCl6, ТеСl6 имеют октаэдрическое строение, хотя они, как и гек-сафторид ксенона ХеF6, содержат в валентной оболочке по семь электронных пар. Однако ХеF6 имеет в согласии с теорией ОЭПВО структуру неправильного октаэдра, тогда как в указанных анионах все связи равноценны. Другой пример — Сs2Анион этой соли, в котором центральный атом окружен девятью электронными парами, вопреки ожиданиям теории имеет строение квадратной антипризмы. Причина отмеченных отклонений состоит в том, что одна из валентных электронных пар, а именно ns, сильно локализована и по своим свойствам резко отличается от характеристик остальных электронных пар.

4 Большие расхождения с предсказаниями теории ОЭПВО наблюдаются для соединений с высокополярными связями, близкими к ионному типу. Так, молекула Li2O, относящаяся к типу АХ2Е2, имеет не угловую, а линейную форму. Последнее понятно из электростатических соображений, если представить Li2O в форме ионной структуры Li0Li.

5 В теории ОЭПВО характеристики заместителей X фактически не принимаются во внимание. Кроме неправильных предсказаний для ионных соединений, это ведет к неточному предсказанию и для соединений, в которых X представляет собой π-сопряженную систему. Так, анионы АХ3Е типа C3,C3 имеют не ожидаемую пирамидальную, а плоскую форму вследствие того, что последняя обеспечивает лучшие условия для включения неподеленной электронной пары в общую π-систему. Несмотря на отмеченные недостатки, представления теории ОЭПВО исключительно полезны и при правильном применении достаточно надежны для объяснения и предсказания структурных характеристик молекул и ионов, образованных непереходными элементами в самых различных валентных состояниях. Теория ОЭПВО может служить примером простой и эффективной теоретической концепции, позволяющей предвидеть главные детали молекулярной структуры без проведения трудоемких расчетов.



Просмотров: 10013


<<< Теория кристаллического поля
Типы связей в кристаллах >>>