Химия - Углерод - Физические свойства

01 марта 2011


Оглавление:
1. Углерод
2. История
3. Физические свойства
4. Нахождение в природе
5. Химические свойства
6. Применение
7. Токсическое действие



Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Изотопы углерода

Природный углерод состоит из двух стабильных изотопов — С и С и одного радиоактивного изотопа С, сосредоточенного в атмосфере и верхней части земной коры. Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: N C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб.

На образовании и распаде С основан метод радиоуглеродного датирования, широко применяющийся в четвертичной геологии и археологии.

Аллотропные модификации углерода

Упрощенная фазовая диаграмма углерода, заштрихованы области где аллотропные модификации могут быть метастабильны.
Схемы строения различных модификаций углерода
a: алмаз, b: графит, c: лонсдейлит
d: фуллерен — бакибол C60, e: фуллерен C540, f: фуллерен C70
g: аморфный углерод, h: углеродная нанотрубка
  • графит
  • алмаз
  • карбин
  • лонсдейлит
  • фуллерены
  • углеродные нанотрубки
  • графен
  • аморфный углерод
    уголь
    техуглерод
    сажа

Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода.

  • тетраэдрическая, образуется при смешении одного s- и трех p-электронов. Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными σ-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.
  • тригональная, образуется при смешении одной s- и двух p-электронных орбиталей. Атом углерода имеет три равноценные σ-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости σ-связей, используется для образования π-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.
  • дигональная, образуется при смешении одного s- и одного p-электронов. При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают π-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию — карбин.

В 2010 году сотрудиники университета Ноттингема Стивен Лиддл и коллеги получили соединение, в котором четыре связи атома углерода находятся в одной плоскости. Ранее возможность «плоского углерода» была предсказана Паулем фон Шлейером для вещества H2CLi2, но оно не было синтезировано.

Графит и алмаз

Основные и хорошо изученные аллотропные модификации углерода — алмаз и графит. При нормальных условиях термодинамически устойчив только графит, а алмаз и другие формы метастабильны. При атмосферном давлении и температуре выше 1200 K алмаз начинает переходить в графит, выше 2100 K превращение совершается за секунды. ΔН0 перехода — 1,898 кДж/моль. При нормальном давлении углерод сублимируется при 3 780 K. Жидкий углерод существует только при определенном внешнем давлении. Тройные точки: графит-жидкость-пар Т = 4130 K, р = 10,7 МПа. Прямой переход графита в алмаз происходит при 3000 K и давлении 11—12 ГПа.

При давлении свыше 60 ГПа предполагают образование весьма плотной модификации С III, имеющей металлическую проводимость. При высоких давлениях и относительно низких температурах из высокоориентированного графита образуется гексагональная модификация углерода с кристаллической решёткой типа вюрцита — лонсдейлит, плотность 3,51 г/см³, то есть такая же, как у алмаза. Лонсдейлит найден также в метеоритах.

Ультрадисперсные алмазы

В 1980-е гг. в СССР было обнаружено, что в условиях динамического нагружения углеродсодержащих материалов могут образовываться алмазоподобные структуры, получившие название ультрадисперсных алмазов. В настоящее время всё чаще применяется термин «наноалмазы». Размер частиц в таких материалах составляет единицы нанометров. Условия образования УДА могут быть реализованы при детонации взрывчатых веществ с значительным отрицательным кислородным балансом, например смесей тротила с гексогеном. Такие условия могут быть реализованы также при ударах небесных тел о поверхность Земли в присутствии углеродсодержащих материалов. Так, в зоне падения Тунгусского метеорита в лесной подстилке были обнаружены УДА.

Карбин

Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул называется карбин. Цепи имеют либо полиеновое строение, либо поликумуленовое. Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке, размерами ячеек и плотностью. Карбин встречается в природе в виде минерала чаоита и получен искусственно — окислительной дегидрополиконденсацией ацетилена, действием лазерного излучения на графит, из углеводородов или CCl4 в низкотемпературной плазме.

Карбин представляет собой мелкокристаллический порошок чёрного цвета, обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода, уложенных параллельно друг другу.

Карбин — линейный полимер углерода. В молекуле карбина атомы углерода соединены в цепочки поочередно либо тройными и одинарными связями, либо постоянно двойными связями. Это вещество впервые получено советскими химиками В. В. Коршаком, А. М. Сладковым, В. И. Касаточкиным и Ю. П. Кудрявцевым в начале 60-х гг. в Институте элементоорганических соединений Академии наук СССР . Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение — в фотоэлементах.

Фуллерены и углеродные нанотрубки

Углерод известен также в виде кластерных частиц С60, С70, C80, C90, C100 и подобных, а также графенов, нанотрубок и сложных структур — астраленов.

Аморфный углерод

В основе строения аморфного углерода лежит разупорядоченная структура монокристаллического графита. Это кокс, бурые и каменные угли, техуглерод, сажа, активный уголь.

Графен

Графен — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, соединенных посредством sp² связей в гексагональную двумерную кристаллическую решётку.



Просмотров: 33408


<<< Тулий
Унбибий >>>