Химия - Алкены - Электронное строение двойной связи

28 февраля 2011


Оглавление:
1. Алкены
2. Электронное строение двойной связи
3. История открытия
4. Нахождение в природе и физиологическая роль алкенов
5. Физические свойства
6. Методы получения алкенов
7. Химические свойства
8. Идентификация алкенов
9. Применение алкенов



В соответствии с теорией гибридизации двойная связь образуется за счет перекрывания вдоль линии связи С-С sp²-гибридных орбиталей атомов углерода и бокового перекрывания углеродных p-орбиталей.

Схема образования связей в молекуле этилена

В состоянии sp² гибридизации электронное состояние атома углерода можно представить следующим образом:


C^{*}\quad
\frac{\uparrow\downarrow}{1s}\;
\frac{\uparrow\,}{sp^2}\;
\frac{\uparrow\,}{sp^2}
\frac{\uparrow\,}{sp^2}
\frac{\uparrow\,}{p}

Все атомы этилена лежат в одной плоскости, а величина валентного угла связи C-H практически равна 120°. Центры углеродных атомов в этилене находятся на расстоянии 0,134 нм, то есть длина двойной связи несколько короче, чем С-С.

Согласно теории молекулярных орбиталей линейная комбинация двух атомных 2p-орбиталей углерода формирует две молекулярные π-орбитали этилена:

Формирование π-орбиталей этилена

Первый потенциал ионизации этилена составляет 10,51 эВ , что позволяет электрону относительно легко уходить с высшей занятой молекулярной орбитали. В то же время, низшая связывающая молекулярная орбиталь этилена имеет достаточно низкую энергию: −1,6-1,8 эВ, что объясняет относительную легкость присоединения электрона с образованием аниона.

Добавление метильного заместителя снижает потенциал ионизации π- электронов примерно на 0,6-0,8 эВ и повышает энергию НСМО на 0,2 эВ, а ВЗМО на 0,7 эВ .



Просмотров: 43065


<<< Этан