Химия - Альтернативная биохимия

28 февраля 2011


Оглавление:
1. Альтернативная биохимия
2. Замена фосфора
3. Замена кислорода
4. «Зеркальный мир»
5. Альтернативная биохимия в фантастических произведениях



Альтернативная биохимия изучает возможность существования форм жизни, которым свойственны биохимические процессы, полностью отличающихся от возникших на Земле. Обсуждаемые отличия включают замену углерода в молекулах органических веществ на другие атомы либо воды в качестве растворителя на другие жидкости. Подобные явления нередко описываются в фантастической литературе.

Замена углерода

Учёные немало высказывались на тему возможности построения органических молекул с помощью других атомов, но никто не предложил теорию, описывающую возможность воссоздания всего многообразия элементов, необходимых для существования жизни.

Кремний и кислород

Среди наиболее вероятных претендентов на роль структурообразующего атома в альтернативной биохимии называют кремний. Он находится в той же группе периодической таблицы, что и углерод, эти два элемента во многом схожи. Однако атомы кремния имеют большую массу и радиус, сложнее образуют двойную или тройную ковалентную связь, что, возможно, в данном случае будет мешать.

Силаны, представляющие соединение кремния и водорода, которые будут являться аналогом алканов, отличаются куда меньшей устойчивостью цепочки атомов кремния, они легче разрушаются. В то же время, силиконы — полимеры, включающие цепочки чередующихся атомов кремния и кислорода, являются более устойчивыми. В частности, силиконовым полимерам свойственна значительная жаропрочность. На этом основании предполагается, что кремниевая жизнь может существовать на планетах со средней температурой, значительно превышающей земную. Кроме того, роль универсального растворителя в этом случае будет играть уже не вода, а соединения со значительно большей температурой кипения и плавления.

Так, например, предполагается, что они будут стабильнее углеродных молекул в среде, насыщенной серной кислотой, то есть в условиях, которые вполне могут существовать на других планетах. В целом же, сложные молекулы с кремниево-кислородной цепью менее устойчивы по сравнению с углеродными аналогами. К тому же, соединения кремния не настолько разнообразны по строению, как белки.

Диоксид кремния, который является аналогом углекислого газа в углеродных формах жизни, представляет собой твёрдое, плохорастворимое вещество. Это создаёт трудности для поступления кремния в биологические системы, основанные на водных растворах, даже если окажется возможным существование биологических молекул на его основе. Диоксид кремния находится в агрегатном состоянии от жидкого до так называемого стеклообразного, поэтому становится тем жиже, чем выше температура: кремниевая жизнь может состоять из расплава «кремниево-биологических молекул» в диоксиде кремния в широком температурном диапазоне, но вода при этом, скорее всего, находится в газообразном состоянии.

Кроме того, во всём разнообразии молекул, которые были обнаружены в межзвёздной среде, 84 основаны на углероде и лишь 8 — на кремнии. Более того, из этих 8 соединений 4 также включают в состав углерод. Примерное соотношение космического углерода к кремнию — 10 к 1. Это даёт основание предполагать, что сложные углеродные соединения более распространены во Вселенной, уменьшая шанс формирования жизни на основе кремния, по крайней мере в тех условиях, что можно ожидать на поверхности планет.

На Земле, как и на других планетах земной группы, много кремния и очень мало углерода. Однако, земная жизнь развилась на основе углерода. Это, вероятно, свидетельствует в пользу того, что этот элемент куда более подходит для формирования биохимических процессов на планетах, подобных нашей. Остаётся возможность того, что при других условиях температуры и давления, кремний может участвовать в формировании биологических молекул в качестве замены углероду.

Следует отметить, что соединения кремния используются некоторыми организмами на Земле. Из них свой панцирь формируют диатомовые водоросли, получая кремний из воды. В качестве структурного материала соединения кремния также используются радиолярией, некоторыми губками и растениями, они входят также в состав соединительной ткани человека.

Азот и фосфор

Азот и фосфор считают другими претендентами на роль основы для биологических молекул. Как и углерод, фосфор может составлять цепочки из атомов, которые, в принципе, могли бы образовывать сложные макромолекулы, если бы он не был таким активным. Однако, в комплексе с азотом, возможно образование более сложных ковалентных связей, что делает возможным возникновение большого разнообразия молекул, включая кольцевые структуры.

В атмосфере Земли азота около 78 процентов, однако в силу инертности двухатомного азота, энергетическая «цена» образования трёхвалентной связи слишком высока. В то же время, некоторые растения могут связывать азот из почвы в симбиозе с анаэробными бактериями, живущими в их корневой системе. В случае присутствия в атмосфере значительного количества диоксида азота или аммиака, доступность азота будет выше. В атмосфере других планет, кроме того, могут существовать и другие оксиды азота.

Подобно растениям на земле, инопланетные формы жизни могли бы усваивать диоксид азота из атмосферы. В таком случае мог бы сформироваться процесс наподобие фотосинтеза, когда энергия солнца тратилась бы на образование аналогов глюкозы с выделением кислорода в атмосферу. В свою очередь, животная жизнь, стоящая выше растений в пищевой цепочке, усваивала бы из них питательные вещества, выделяя диоксид азота в атмосферу и соединения фосфора в почву.

В аммиачной атмосфере растения с молекулами на основе фосфора и азота получали бы соединения азота из воздуха, фосфор из почвы. В их клетках происходило бы окисление аммиака для образования аналогов моносахаридов, водород бы выделялся в качестве побочного продукта. В данном случае животные будут вдыхать водород, расщепляя аналоги полисахаридов до аммиака и фосфора, то есть энергетические цепочки формировались бы в обратном направлении, по сравнению с существующими на нашей планете.

Споры на эту тему далеко не окончены, так как некоторые этапы цикла на основе фосфора и азота являются энергодефицитными. Так же представляется спорным, чтобы во Вселенной соотношения этих элементов встречались в необходимой для возникновения жизни пропорции.

Азот и бор

Атомы азота и бора, находящиеся в «связке», в определённой степени имитируют связь «углерод—углерод». Так, известен боразол ~\mathrm{B_3N_3H_6}, который иногда называют «неорганическим бензолом». Всё же, на основе комбинации бора с азотом невозможно создать всё то разнообразие химических реакций, известных в химии углерода. Тем не менее, принципиальную возможность такой замены в виде каких-то отдельных фрагментов искусственных биомолекул, нельзя полностью исключать.



Просмотров: 7265


<<< Биохимия
Анаэробное окисление метана >>>