Химия - Хлопин, Виталий Григорьевич - Химия радиоэлементов и прикладная радиохимия

28 февраля 2011


Оглавление:
1. Хлопин, Виталий Григорьевич
2. Основные направления научной деятельности
3. Технология радиоактивных веществ
4. Химия радиоэлементов и прикладная радиохимия
5. Геохимия радиоэлементов и благородных газов
6. Аналитическая химия
7. Урановая проблема и Атомный проект
8. Педагогическая, административная, общественная и редакторская деятельность
9. Награды и научное признание



В этой области В. Г. Хлопиным с сотрудниками и учениками разработана методология исследования процесса изоморфного соосаждения микрокомпонентов и способы достижения равновесия в системе твердая фаза—раствор, — установлено влияние многих факторов на этот процесс и доказана гипотеза В. Г. Хлопина о подчинении процесса дробной кристаллизации закону распределения вещества между двумя несмешивающимися фазами — условия распределения микрокомпонента между жидкой и твердой фазами — закон Хлопина. Показана возможность использования метода изоморфной сокристаллизации не только для выделения радиоактивных элементов, но и для изучения их состояния в жидкой и твердой фазах, — для определения их валентности. В. Г. Хлопиным и А. Г. Самарцевой этим методом установилено существование соединений двух- и шестивалентного полония. Был изучен также процесс адсорбции поверхностью кристаллических осадков, — распределение между газовой фазой и кристаллическим осадком, — между солевым расплавом и твердой фазой .

Таким образом, в этом разделе исследования В. Г. Хлопина затрагивают следующие ключевые вопросы: 1. условия достижения истинного равновесия микрокомпонента между кристаллической твёрдой фазой и раствором; 2. использование радиоэлементов как индикаторов при определении механизма изоморфного замещения разновалентных ионов; 3. применение общих закономерностей изоморфного замещения для разработки метода для фиксации присутствующихся в чрезвычайно малых пропорциях и неустойчивых химических соединений в твёрдой фазе, установление их валентности и химического типа, — для выявления новых химических равновесий и в твёрдой фазе, и в растворе; 4. условия адсорбционного равновесия между твёрдой кристаллической фазой и раствором

Термодинамическое равновесие микрокомпонента

Строго экспериментально установлено:

а) При достижении истинного равновесия между кристаллической твёрдой фазой и раствором присутствующий в растворе изоморфный с твёрдой фазой микрокомпонент распределяется между двумя несмешивающимися растворителями по закону Бертло — Нернста и притом во всех известных случаях в простой его форме: Ск/Ср = К или

\frac{x}{a-x} = D \frac{y}{b-y}

где x — количество перешедшего в кристаллы микрокомпонента, a — общее количество микрокомпонента, y и b — соответственные значения для микрокомпонента.

б) Механизм, ответственный за достижение истинного равновесия между кристаллической фазой и раствором, сводится к процессу многократной перекристаллизации твёрдой фазы, заменяющему в рассматриваемом случае практически отсутствующий при обычных условиях процесс диффузии в твёрдом состоянии. Перекристаллизация при субмикроскопических размерах кристаллов протекает чрезвычайно быстро, таким образом при кристаллизации из перенасыщенных растворов перекристаллизация и установление равновесия заканчиваются на стадии, пока кристаллики достаточно малы.

в) В случае медленной кристаллизации не из перенасыщенных растворов, а из насыщенных, в частности, за счёт медленного испарения, истинное равновесие между кристаллами и раствором не наблюдается, а распределение микрокомпонента между твёрдой фазой и раствором протекает в данном случае по логарифмическому закону Госкинса и Дернера, сложившемуся на основе представления неперывном ионном обмене между гранями растущего кристалла и раствором

\ln\frac{a}{a-x} = \lambda \ln\frac{b}{b-y}

Здесь, как и выше: a — общее количество микрокомпонента, x — количество микрокомпонента, перешедшего в твёрдую фаазу, b — общее количество макракомпонента, y — количество макрокомпонента, перешедшего в твёрдую фазу.

г) Резкое изменение значения D при изменении t° или состава жидкой фазыявляется показателем возникновения нового химического равновесия в растворе или в твёрдой фазе.

д) Случай распределения микрокомпонента между кристаллической твёрдой фазой и раствором может служить доказательством образования им с анионом или катионом твёрдой фазы соединений, кристаллизующихся изоморфно с твёрдой фазой.

Радиоактивные элементы как индикаторы

Радиоактивные элементы использовались В. Г. Хлопиным и Б. А. Никитиным в качестве индикаторов при определении природы нового рода смешанных кристаллов Грамма. Настоящие исследования показали принципиальную разницу между истинными смешанными кристаллами в духе Э. Митчерлиха, когда замещение одного компонента другим выражается в форме: ион на ион, или атом за атом, молекула за молекулу, и смешанными кристаллами нового рода, в которых такое простое замещение невозможно, а протекает посредством весьма малых размеров готовых участков кристаллической решётки каждого компонента. Учёными было показано, что смешанные кристаллы нового рода принципиально отличаются от истинных смешанных кристаллов наличием низкого предела смешиваемости — вовсе не образуются при малой концентрации одного из компонентов. В данном случае они подобны аномальным смешанным кристаллам, и соотносятся с последними приблизительно как коллоидный раствор с суспензией. Эти работы навели В. Г. Хлопина на мысль о потребности классификации изоморфных тел не через рассмотрение структуры изоморфных смесей в статическом равновесии, а сообразуясь со способами замещения компонентов — учитывая динамику образования изоморфной смеси. В таком случае все изоморфные тела по способу замещения строго разделяются на две группы:

а) Изоморфные соединения в духе Э. Митчерлиха, истинно изоморфные. Замещение при образовании смешанных кристаллов такими соединениями происходит по первому принципу: ион за ион и т. д. К таким кристаллам применимы указанные законы распределения. Такие соединения обладают сходным химическим составом и молекулярной структурой.

б) Все другие изоморфные соединения, когда образование смешанных кристаллов обусловлено вторым принципом: замещение участками от элементарной кристаллической ячейки или близких к ним, до микроскопических — аномальные смешанные кристаллы типа FeCl2 — NH4Cl, Ba2, Pb2, метиленовая синька K2SO4 — понсорот и т. д., демонстрирующие неоднородность).


3. Благодаря рассмотренным в двух предыдущих пунктах работам В. П. Хлопин смог представить в новой форме закон Э. Митчерлиха, дающий возможность судить о составе и молекулярной структуре неизвестных соединений на основе образования ими изоморфных смесей с соединениями, состав и молекулярная структура которых известны. В. Г. Хлопиным предложен метод изоморфной сокристаллизации из растворов для фиксации невесомых и нестойких химических соединений и определения их состава. Метод дал возможность открыть и определить состав отдельных соединений двух— и шестивалентного полония.


4. Изучая адсорбцию изоморфных ионов на поверхности кристаллических осадков, В. Г. Хлопин показал, что адсорбционное равновесие устанавливается за 20—30 минут; — адсорбция изоморфных ионов не зависит от заряда поверхности адсорбера, когда не меняется его растворимость. Корректно воспроизводимые результаты изучения адсорбции и полная обратимость данного процесса достигается только при неизменности поверхности адсорбера на протяжении всего опыта — при неизменности растворимости адсорбера; в случае изменения состава жидкой фазы или при иных дополнительных условиях, когда меняется растворимость адсорбера, адсорбция приобретает более сложный характер, что сопровождается сокристаллизацией, искажающей результаты. Изучая кинетику адсорбции, с аналогичным явлением столкнулся Л. Имре. В. Г. Хлопин дал формулу для определения поверхности кристаллических осадков путём адсорбции на них изоморфного иона и экспериментально подтвердил её применимость.



Просмотров: 8669


<<< Фарадей, Майкл
Цан, Карл Герман >>>