Химия - Жидкий водород - Ракетное топливо
01 марта 2011Оглавление:
1. Жидкий водород
2. История
3. Спиновые изомеры водорода
4. Ракетное топливо
Жидкий водород является распространенным компонентом ракетных топлив, которое используется для реактивного ускорения ракет-носителей и космических аппаратов. В большинстве жидкостных ракетных двигателях на водороде, он сначала применяется для регенеративного охлаждения сопла и других частей двигателя, перед его смешиванием с окислителем и сжиганием для получения тяги. Используемые современные двигатели на компонентах H2/O2 потребляют переобогащенную водородом топливную смесь, что приводит к некоторому количеству несгоревшего водорода в выхлопе. Кроме увеличения удельного импульса двигателя за счет уменьшения молекулярного веса, это еще сокращает эрозию сопла и камеры сгорания.
Такие препятствия использования «ЖВ» в других областях, как криогенная природа и малая плотность, являются также сдерживающим фактором для использования в данном случае. На 2009 год существует только одна ракета-носитель, которая целиком является водородной ракетой. В основном «ЖВ» используется либо на верхних ступенях ракет, либо на блоках, которые значительную часть работы по выводу полезной нагрузки в космос выполняют в вакууме. В качестве одной из мер по увеличению плотности этого вида топлива существуют предложения использования шугообразного водорода, то есть полузамерзшей формы «ЖВ».
Водород с разными окислителями
Данные приводятся на основании таблиц, опубликованных в США в рамках проекта сбора термодинамических данных «JANAF», которые широко используются в этих целях. Изначально вычисления производились компанией «Рокетдайн». При этом делались предположения, что имеет место адиабатическое сгорание, изоэнтропийное расширение в одном направлении и имеет место смещение равновесного состояния. Кроме варианта использования водорода в качестве топлива, приводятся варианты с использованием водорода в качестве рабочего тела, что объясняется его небольшим молекулярным весом. Все данные рассчитаны для давления в камере сгорания, равного 68,05 атмосферы. Последняя строка таблицы содержит данные для газообразных водорода и кислорода.
Оптимальное расширение от 68.05 атм до условий: | поверхности Земли | вакуума | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Окислитель | Топливо | Комментарий | Ve | r | Tc | d | C* | Ve | r | Tc | d | C* |
LOX | H2 | распространено | 3816 | 4.13 | 2740 | 0.29 | 2416 | 4462 | 4.83 | 2978 | 0.32 | 2386 |
H2-Be 49/51 | 4498 | 0.87 | 2558 | 0.23 | 2833 | 5295 | 0.91 | 2589 | 0.24 | 2850 | ||
CH4/H2 92.6/7.4 | 3126 | 3.36 | 3245 | 0.71 | 1920 | 3719 | 3.63 | 3287 | 0.72 | 1897 | ||
F2 | H2 | 4036 | 7.94 | 3689 | 0.46 | 2556 | 4697 | 9.74 | 3985 | 0.52 | 2530 | |
H2-Li 65.2/34.0 | 4256 | 0.96 | 1830 | 0.19 | 2680 | |||||||
H2-Li 60.7/39.3 | 5050 | 1.08 | 1974 | 0.21 | 2656 | |||||||
OF2 | H2 | 4014 | 5.92 | 3311 | 0.39 | 2542 | 4679 | 7.37 | 3587 | 0.44 | 2499 | |
F2/O2 30/70 | H2 | 3871 | 4.80 | 2954 | 0.32 | 2453 | 4520 | 5.70 | 3195 | 0.36 | 2417 | |
GOX | GH2 | 3997 | 3.29 | 2576 | - | 2550 | 4485 | 3.92 | 2862 | - | 2519 |
В таблице использованы обозначения: | r | массовое соотношение смеси «окислитель/топливо»; | |
Ve | средняя скорость истечения газов; | ||
C* | характеристическая скорость; | ||
Tc | температура в КС; | ||
d | средняя плотность топлива и окислителя; |
при этом «Ve» является той же единицей, что и удельный импульс, но приведена к размерности скорости, а «C*» вычисляется путем умножения давления в камере сгорания на коэффициент расширения площади сопла и последующего деления на скорость расхода массы топлива и окислителя, что дает приращение скорости на единицу массы.
Просмотров: 5730
|