Химия - Окись этилена - Применение

01 марта 2011


Оглавление:
1. Окись этилена
2. История открытия
3. Строение и параметры молекулы
4. Физические свойства
5. Химические свойства
6. Лабораторные методы получения
7. Промышленное производство
8. Применение
9. Идентификация окиси этилена
10. Огне- и пожароопасность



Основным направлением использования окиси этилена является получение этиленгликолей: до 75 % всего глобального потребления. Среди других ключевых производных можно выделить этоксилаты, этаноламины, простые и сложные эфиры этиленгликоля, полиэтиленгликоль.

Промышленное производство на основе окиси этилена

Основные направления промышленного использования

Окись этилена — важнейшее сырьё, используемое в производстве крупнотоннажной химической продукции, являющейся основой для большого числа разнообразных товаров народного потребления во всех промышленно развитых странах.

Глобальное промышленное использование окиси этилена, по данным на 2007 год

Основные направления использования окиси этилена:

  • этиленгликоли — используются в качестве антифризов, в производстве полиэстера, полиэтилентерефталата, агентов для осушения газов, жидких теплоносителей, растворителей и пр.;
  • полиэтиленгликоли — используются в производстве парфюмерии и косметики, фармацевтических препаратов, лубрикантов, растворителей для красок и пластификаторов;
  • эфиры этиленгликоля — входят в состав тормозных жидкостей, моющих средств, растворителей лаков и красок;
  • этаноламины — применяются в производстве мыла и моющих средств, очистки природного газа и аппретирования тканей;
  • этоксилаты — используют в производстве моющих средств, в качестве сурфактантов, эмульгаторов и диспергаторов.

Крупнейшим направлением использования окиси этилена является производство этиленгликолей, однако процент его применения в этом виде сильно варьирует в зависимости от региона: от 44 % в Западной Европе, 63 % Японии и 73 % в Северной Америке до 90 % в остальной части Азии и 99 % в Африке.

Производство этиленгликоля

В промышленности этиленгликоль получают некаталитической гидратацией окиси этилена при до 200 °C и давлении 1,5—2 МПа:

\mathsf{O+H_2O}\rightarrow\mathsf{HOCH_2CH_2OH}

Побочными продуктами реакции будут диэтиленгликоль, триэтиленгликоль и полигликоли, которые отделяются от этиленгликоля дистилляцией при пониженном давлении.

Другой метод: реакция окиси этилена и CO2 с промежуточным получением этиленкарбоната и его последующий гидролиз с декарбоксилированием:

\mathsf{O+CO_2}\rightarrow\mathsf{C\!\!=\!\!O\ \xrightarrow{+H_2O}\ HOCH_2CH_2OH}

В настоящий момент самыми современными технологиями производства этиленгликоля в мире являются:

  • Shell OMEGA® technology — двухступенчатый синтез через этиленкарбонат с использованием галогенида фосфония в качестве катализатора. Выход моноэтиленгликоля составляет 99—99,5 %; при этом примеси других гликолей практически отсутствуют. Главное достоинство процесса — получение этиленгликоля высокой чистоты без необходимости дальнейшей очистки.
  • Dow METEOR® technology — комплексная технология получения окиси этилена и его последующего гидролиза в этиленгликоль. Выход моноэтиленгликоля составляет 90—93 %. Главное достоинство процесса — упрощённая структура производства, предполагающая меньшее число стадий и количество оборудования.

Производство эфиров гликолей

Основными эфирами моно-, ди- и триэтиленгликолей, производимыми в промышленных объёмах, являются метиловый, этиловый и нормальный бутиловый, а также их ацетаты и фталаты.

Химическая схема производства заключается в реакции соответствующего спирта с окисью этилена:

\mathsf{O+ROH}\rightarrow\mathsf{HOCH_2CH_2OR}
\mathsf{O+HOCH_2CH_2OR}\rightarrow\mathsf{HOCH_2CH_2OCH_2CH_2OR}
\mathsf{O+HOCH_2CH_2OCH_2CH_2OR}\rightarrow\mathsf{HOCH_2CH_2OCH_2CH_2OCH_2CH_2OR}

Реакция моноэфиров с кислотой или её ангидридом приводит к образованию соответствующих сложных эфиров:

\mathsf{CH_3COOH+HOCH_2CH_2OR}\rightarrow\mathsf{ROCH_2CH_2OCOCH_3+H_2O}

Производство этаноламинов

В промышленности этаноламины получают по реакции аммиака с окисью этилена в безводной среде при температуре 40—70 °C, давлении 1,5—3,5 МПа:

\mathsf{O+NH_3}\rightarrow\mathsf{HOCH_2CH_2NH_2}
\mathsf{2O+NH_3}\rightarrow\mathsf{_2NH}
\mathsf{3O+NH_3}\rightarrow\mathsf{_3N}

В процессе реакции образуются все три этаноламина, при этом аммиак и часть моноэтаноламина подвергаются рециркуляции. Разделение готовых продуктов осуществляется с помощью вакуумной дистилляции.

Аналогично получают и различные гидроксиалкиламины:

\mathsf{O+RNH_2}\rightarrow\mathsf{HOCH_2CH_2NHR}
\mathsf{2O+RNH_2}\rightarrow\mathsf{_2NR}

Монозамещённые продукты образуются при действии на большой избыток амина окиси этилена в присутствии воды и температуре менее 100 °C; дизамещённые — при небольшом избытке окиси этилена, температуре 120—140 °C и давлении 0,3—0,5 МПа.

Производство этоксилатов

Производство этоксилатов в промышленности осуществляют прямой реакцией высших спиртов, кислот или аминов с окисью этилена в присутствии щелочного катализатора при температуре 120—180 °C.

Схематичное изображение производства этоксилатов

В настоящий момент в промышленности новые мощности по выпуску этоксилатов обычно основаны на The BUSS LOOP® reactors technology.

The BUSS LOOP® reactors technology представляет собой непрерывный процесс, включающий в себя три стадии:

  • предварительная подготовка: инициатор или катализатор реакции вместе с исходным сырьём подаются в ёмкость, где происходит его предварительная обработка — смешение, нагрев и вакуумное обезвоживание в соответствии с технологией;
  • химическая реакция: осуществляется в специальном изолированном реакторе в инертной атмосфере для предотвращения возможного взрыва окиси этилена;
  • завершающая стадия: нейтрализация реакционной смеси, дегазация и очистка товарной продукции.

Производство акрилонитрила

В настоящий момент производство акрилонитрила производится преимущественно SOHIO-методом, однако вплоть до 1960 года одним из важнейших производственных процессов его получения был метод присоединения цианистого водорода к окиси этилена с последующей дегидратацией образующегося циангидрина:

\mathsf{O+HCN}\rightarrow\mathsf{HOCH_2CH_2CN\ \xrightarrow\ CH_2\!\!=\!\!CH\!\!-\!\!CN }

Присоединение синильной кислоты к окиси этилена осуществляется в присутствии катализатора, а дегидратация циангидрина происходит в газовой фазе при каталитическом воздействии активного оксида алюминия.

Прочие направления использования

Прямое использование окиси этилена в различных отраслях экономики, по состоянию на 2004 год, составляет всего 0,05 % всего мирового объёма производства.

Этиленоксид используется как фумигант и дезинфицирующее вещество в смеси с диоксидом углерода, азотом или дихлордифторметаном для газовой стерилизации медицинского оборудования и инструмента, шприцев, упаковочных материалов и спецодежды, лекарственных форм, хирургического и научного оборудования; обработки мест хранения различных растительных продуктов, одежды и меха, ценных документов.

Кроме того, окись этилена применяется в качестве замедлителя пламени, ускорителя созревания листьев табака и фунгицида в сельском хозяйстве.

Специфическим направлением использования окиси этилена является её возможность применения в качестве основного компонента боеприпасов объёмного взрыва.



Просмотров: 27248


<<< Винилхлорид