Химия - Пептиды - Терминология: Олигопептиды и Полипептиды

28 февраля 2011


Оглавление:
1. Пептиды
2. Терминология: Олигопептиды и Полипептиды
3. Терминология по теме



Грань между олигопептидами и полипептидами достаточно условна. Часто пептиды, содержащие менее 10-20 аминокислотных остатков, называют олигопептидами, а вещества с большим числом аминокислотных звеньев — полипептидами. Во многих случаях эта грань в научной литературе не проводится вообще и небольшая белковая молекула упоминается как полипептид.

История

Пептиды впервые были выделены из гидролизатов белков, полученных с помощью ферментирования.

  • Термин пептид предложен Э. Фишером, который к 1905 г. разработал общий метод синтеза пептидов.

В 1953 В. Дю Виньо синтезировал окситоцин, первый полипептидный гормон. В 1963 г., на основе концепции твердофазного пептидного синтеза были созданы автоматические синтезаторы пептидов. Использование методов синтеза полипептидов позволило получить синтетический инсулин и некоторые ферменты.

На сегодняшний день известно более 1500 видов пептидов, определены их свойства и разработаны методы синтеза.

Панкреатические молекулы полипептидного характера

  • en:NPY
  • Пептид YY
  • APP Avian pancreatic polypeptide
  • en:HPP Human pancreatic polypeptide

Опиоидные пептиды

Опиоидные пептиды — группа природных и синтетических пептидов, сходных с опиатами по способности связываться с опиоидными рецепторами организма.

Эндогенные морфиноподобные вещества были впервые выделены в 1975 году из целого мозга и гипофиза голубей, морских свинок, крыс, кроликов и мышей, а в 1976 году фракции таких олигопептидов были обнаружены в спинномозговой жидкости и крови человека . Различные виды этих олигопептидов получили название эндорфинов и энкефалинов.

Лиганды опиоидных рецепторов были обнаружены и во многих периферических органах, тканях и биологических жидкостях. Присутствие опиоидов показано в гипоталамусе и гипофизе, плазме крови и спиномозговой жидкости, желудочно-кишечном тракте, лёгких, органах репродуктивной системы, иммунокомпетентных тканях и даже в коже. Наряду с эндорфинами обнаружены и так называемые экзорфины или параопиоиды — опиоидные пептиды, образующиеся при переваривании пищи. К настоящему времени опиоидные рецепторы и их эндогенные лиганды обнаружены практически во всех органах и тканях млекопитающих, а также у животных более низких ступеней классификации вплоть до простейших.

Основная часть опиоидных пептидов образуется путём внутриклеточного расщепления высокомолекулярных предшественников, что приводит к образованию ряда биологически активных фрагментов, в том числе и опиоидных пептидов. Идентифицированы и наиболее изучены 3 таких предшественника: проопиомеланокортин, проэнкефалин А и продинорфин. В состав ПОМК входят аминокислотные последовательности b-липотропина, АКТГ, a-, b- и g-меланоцитстимулирующих гормонов, a-, b- и g-эндорфинов. В настоящее время установлено, что основным источником энкефалинов в организме является проэнкефалин А, локализованный преимущественно в надпочечниках. В его составе содержится 4 аминокислотные последовательности мет-энкефалина и одна лей-энкефалина, а также ряд продленных форм мет-энкефалина: меторфамид, МЕРГЛ, МЕРФ, пептид Ф и группы родственных пептидов, входящих в состав пептида Е: BAM 22, 20, 18, 12, взаимодействующих с опиоидными рецепторами mu-, kappa- и delta-типа.
В структуре другого проэнкефалина — препроэнкефалина В — обнаружены последовательности a- и b-неоэндорфинов, динорфинов, обладающих наибольшим сродством к ОР k-типа, а также лей-энкефалина. Радиорецепторный анализ связывания эндорфинов и энкефалинов с опиоидными рецепторами показал, что сродство мет- и лей-энкефалинов к опиоидным рецепторам delta-типа выше, чем к рецепторам mu-типа; b-эндорфин имеет примерно одинаковое сродство к опиоидным рецепторам mu- и delta-типа, a- и g-эндорфины проявляют гораздо меньшее сродство к обоим типам рецепторов по сравнению с b-эндорфином. Несмотря на то, что мет-энкефалин взаимодействует преимущественно с опиоидными рецепторами d-типа, его аналоги с более длинной аминокислотной последовательностью — меторфамид и пептиды группы BAM обладают противоположным профилем селективности взаимодействия с опиоидными рецепторами. Большинство эндогенных опиоидов в той или иной степени могут взаимодействовать с несколькими типами рецепторов. Так, b-эндорфин своим N-концевым фрагментом способен взаимодействовать с mu- и delta-опиоидными рецепторами, а С-концом с epsilon-рецепторами. В коже амфибий, а затем и в мозге и некоторых других органах теплокровных, обнаружен 4-ый предшественник ОП — продерморфин, который считается источником дерморфина и дельторфина. В ЦНС обнаружены эндогенные пептиды, специфически взаимодействующие с mu-опиоидными рецепторами: Tyr-Pro-Trp-Phe-NH2 и Tyr-Pro-Phe-Phe-NH2, названные эндоморфинами, а также пептид ноцицептин, оказывающий свой анальгетический эффект через опиоидоподобные орфановые рецепторы.

Свойства пептидов

Пептиды постоянно синтезируются во всех живых организмах для регулирования физиологических процессов. Свойства пептидов зависят, главным образом, от их первичной структуры — последовательности аминокислот, а также от строения молекулы и её конфигурации в пространстве.

Классификация пептидов и строение пептидной цепочки

Молекула пептида — это последовательность аминокислот: два и более аминокислотных остатка, соединенных между собой амидной связью, составляют пептид. Количество аминокислот в пептиде может сильно варьировать. И в соответствии с их количеством различают:

  1. олигопептиды — молекулы, содержащие до десяти аминокислотных остатков; иногда в их названии упоминается количество входящих в их состав аминокислот, например, дипептид, трипептид, пентапептид и др.;
  2. полипептиды — молекулы, в состав которых входит более десяти аминокислот.

Соединения, содержащие более ста аминокислотных остатков, обычно называются белками. Однако это деление условно, некоторые молекулы, например, гормон глюкагон, содержащий лишь двадцать девять аминокислот, называют белковым гормоном. По качественному составу различают:

  1. гомомерные пептиды — соединения, состоящие только из аминокислотных остатков;
  2. гетеромерные пептиды — вещества, в состав которых входят также небелковые компоненты.

Пептиды также делятся по способу связи аминокислот между собой:

  1. гомодетные — пептиды, аминокислотные остатки которых соединены только пептидными связями;
  2. гетеродетные пептиды — те соединения, в которых помимо пептидных связей встречаются еще и дисульфидные, эфирные и тиоэфирные связи.

Цепочка повторяющихся атомов называется пептидным остовом:. Участок с аминокислотным радикалом образует соединениеH—OC—), называемое аминокислотным остатком. N-концевой аминокислотный остаток имеет свободную α-аминогруппу, в то время как у C-концевого аминокислотного остатка свободной является α-карбоксильная группа. Пептиды различаются не только по аминокислотному составу, но и по количеству, а также расположению и соединению аминокислотных остатков в полипептидную цепочку. Пример: Про-Сер-Про-Ала-Гис и Гис-Ала-Про-Сер-Про Несмотря на одинаковый количественный и качественный состав, эти пептиды имеют совершенно разные свойства.

Пептидная связь

Пептидная связь — это вид химической связи, которая возникает вследствие взаимодействия α-аминогруппы одной аминокислоты и α-карбоксигруппы другой аминокислоты. Амидная связь очень прочная, и в нормальных клеточных условиях самопроизвольно не разрывается. Пептидная связь разрушается при действии на неё специальных протеолитических ферментов.

Значение

Пептидные гормоны и нейропептиды, например, регулируют большинство процессов организма человека, в том числе, и принимают участие в процессах регенерации клеток. Пептиды иммунологического действия защищают организм от попавших в него токсинов. Для правильной работы клеток и тканей необходимо адекватное количество пептидов. Однако с возрастом и при патологии возникает дефицит пептидов, который существенно ускоряет износ тканей, что приводит к старению всего организма. Сегодня проблему недостаточности пептидов в организме научились решать. Пептидный пул клетки восполняют синтезированными в лабораторных условиях короткими пептидами.

Синтез пептидов

Образование пептидов в организме происходит в течение нескольких минут, химический же синтез в условиях лаборатории — достаточно длительный процесс, который может занимать несколько дней, а разработка технологии синтеза – несколько лет. Однако, несмотря на это, существуют довольно весомые аргументы в пользу проведения работ по синтезу аналогов природных пептидов. Во-первых, путем химической модификации пептидов возможно подтвердить гипотезу первичной структуры. Аминокислотные последовательности некоторых гормонов стали известны именно благодаря синтезу их аналогов в лаборатории.

Во-вторых, синтетические пептиды позволяют подробнее изучить связь между структурой аминокислотной последовательности и её активностью. Для выяснения связи между конкретной структурой пептида и его биологической активностью была проведена огромная работа по синтезу не одной тысячи аналогов. В результате удалось выяснить, что замена лишь одной аминокислоты в структуре пептида способна в несколько раз увеличить его биологическую активность или изменить её направленность. А изменение длины аминокислотной последовательности помогает определить расположение активных центров пептида и участка рецепторного взаимодействия.

В-третьих, благодаря модификации исходной аминокислотной последовательности, появилась возможность получать фармакологические препараты. Создание аналогов природных пептидов позволяет выявить более «эффективные» конфигурации молекул, которые усиливают биологическое действие или делают его более продолжительным.

В-четвертых, химический синтез пептидов экономически выгоден. Большинство терапевтический препаратов стоили бы в десятки раз больше, если бы были сделаны на основе природного продукта.

Зачастую активные пептиды в природе обнаруживаются лишь в нанограммовых количествах. Плюс к этому, методы очистки и выделения пептидов из природных источников не могут полностью разделить искомую аминокислотную последовательность с пептидами противоположного или же иного действия. А в случае специфических пептидов, синтезируемых организмом человека, получить их возможно лишь путем синтеза в лабораторных условиях.

Биологически активные пептиды

Пептиды, обладая высокой физиологической активностью, регулируют различные биологические процессы. По своему биорегуляторному действию пептиды принято делить на несколько групп:

  • соединения, обладающие гормональной активностью;
  • вещества, регулирующие пищеварительные процессы;
  • пептиды, регулирующие аппетит;
  • соединения, обладающие обезболивающим эффектом;
  • органические вещества, регулирующие высшую нервную деятельность, биохимические процессы, связанные с механизмами памяти, обучения, возникновением чувства страха, ярости и др.;
  • пептиды, которые регулируют артериальное давление и тонус сосудов.

Однако такое деление условно, так как действие многих пептидов не ограничивается каким-либо одним направлением. Так, например, вазопрессин, помимо сосудосуживающего и антидиуретического действия, улучшает память.

Пептидные гормоны

Пептидные гормоны — это многочисленный и наиболее разнообразный по составу класс гормональных соединений, представляющий собой биологически активные вещества. Их образование происходит в специализированных клетках железистых органов, после чего активные соединения поступают в кровеносную систему для транспортировки к органам-мишеням. По достижении цели гормоны специфически воздействуют на определенные клетки, взаимодействуя с соответствующим рецептором.

Нейропептиды

Нейропептиды — соединения, синтезируемые в нейронах, обладающие сигнальными свойствами. Действие нейропептидов на ЦНС очень разнообразно. Они воздействуют непосредственно на мозг и контролируют сон, влияют на память, поведение, процесс обучения, обладают обезболивающим действием.

Пептиды иммунологического действия

Наиболее изученные пептиды, участвующие в иммунном ответе — тафцин, тимопотин II и тимозин α1. Их синтез в клетках организма человека обеспечивает функционирование иммунной системы.

Пептидные биорегуляторы

На основе разработанной петербургскими учеными технологии из органов и тканей животных были выделены пептиды, обладающие тканеспецифическим действием, способные восстанавливать на оптимальном уровне метаболизм в клетках тех тканей, из которых они выделены. Важным отличием этих пептидов является их регулирующее действие: при подавлении функции клетки они её стимулируют, а при повышенной функции – снижают до нормального уровня. Это позволило создать новый класс лекарственных препаратов – пептидные биорегуляторы.

Первый из них – иммуномодулятор тималин – уже более 28 лет находится на фармацевтическом рынке и применяется для восстановления функции иммунной системы при заболеваниях различного генеза, включая онкологические заболевания. За ним последовали эпиталамин, сампрост, кортексин, ретиналамин. За 25 лет широкого применения пептидных биорегуляторов их получили более 15 млн человек. При этом не было выявлено противопоказаний к их применению и побочного действия.

Пептиды

  • Субстанция Р
  • en:Kassinin
  • Нейрокинин А
  • en:Eledoisin
  • Нейрокинин В


Просмотров: 5268


<<< Янтарь