Химия - Планарная технология - Основные технологические операции

28 февраля 2011


Оглавление:
1. Планарная технология
2. Основные технологические операции
3. Завершающие операции при производстве микросхем



Литография

Основные технологические операции, используемые в планарной технологии, основаны на процессе литографии. Применяются следующие методы:

  1. оптическая фотолитография, λ=310-450нм;
    1. ультрафиолетовая фотолитография на эксимерных лазерах, λ=248, λ=193 нм
  2. фотолитография в глубоком ультрафиолете, λ=100-10нм;
  3. рентгеновская фотолитография, λ=0.1-10нм
  4. электронная литография
  5. ионная литография

Приёмы применяемой фотолитографии могут быть сканирующими и проекционными; контактными, бесконтактными, и на микрозазоре. Также может быть ограниченно применён метод радиационно-стимулированной диффузии.

Цепочка операций

Технологическая цепочка состоит из серии циклов, включающих в себя следующие основные операции:

  • подготовка подложки: применяется механическая и химическая полировка для получения плоской поверхности без механических дефектов;
  • формирование на поверхности подложки слоя необходимого материала с заданной структурой: эпитаксиальное наращивание, осаждение диэлектрических или металлических плёнок;
  • создание на поверхности подложки защитного слоя: в случае кремниевых подложек для этого используется окисление поверхности, для удешевления процесса, а также в случае других подложек, часто используется эпитаксиальное наращивание слоя диоксида или нитрида кремния, либо другого материала с низким коэффициентом диффузии легирующих примесей. Толщина слоя подбирается так, чтобы за время, необходимое для создания легированной области необходимой конфигурации в подложке, легирующий элемент не достиг подложки сквозь защитный слой;
  • нанесение слоя фоторезиста, обладающего устойчивостью к используемым травителям;
  • совмещение изображений по знакам совмещения и экспонирование рисунка окон на слой фоторезиста;
  • стравливание исключительно засвеченных участков слоя фоторезиста;
  • стравливание защитного слоя с подложки на участках, не закрытых фоторезистом;
  • удаление остатков слоя фоторезиста;
  • возможная операция: внедрение легирующих примесей нередко проводят в двухстадийном процессе, разделяя фазы загонки примеси в приповерхностную область и разгонки загнанной примеси по требуемому объёму; загонка производится путём локальной диффузии или ионной имплантации легирующих примесей через окна в защитном слое в поверхность подложки; режимы диффузии подбираются так, чтобы за время этой и всех последующих технологических операций размер легированной области достиг требуемых размеров по площади и глубине, а нарушенная радиацией при ионном легировании кристаллическая решётка восстановилась;
  • возможная операция: плазменное или химическое травление поверхности подложки для удаления излишков слоя ранее осаждённого материала.
  • плазменное или химическое травление поверхности подложки для удаления защитного слоя.
  • планаризация поверхности перед переходом к новому циклу, например при помощи процесса CMP.


Основные циклы, выполняемые при создании полупроводниковых приборов, следующие:

  • формирование областей р-типа
  • формирование областей n-типа
  • формирование проводящих дорожек и контактных площадок

Схемы чередования операций и циклов бывают достаточно сложны, а их количество может измеряться десятками. Так, например, при создании микросхем на биполярных транзисторах с коллекторной изоляцией, с комбинированной изоляцией и в других схемах, где необходимо или желательно обеспечить снижение сопротивления коллектора и повышение быстродействия,) сначала выполняется оксидирование, фотолитография и диффузия под захоронёный n+ слой, затем наращивается эпитаксиальный слой полупроводника и уже в эпитаксиальном слое создаются конкретные элементы микросхемы. После этого поверхность пластины снова изолируют, выполняют контактные окна, и наносят проводящие дорожки и контактные площадки. В сложных микросхемах контактные дорожки могут выполняться в несколько уровней с нанесением между уровнями диэлектрических прослоек, опять же с вытравленными окнами.

Порядок циклов в первую очередь определяется зависимостями коэффициентов диффузии примесей от температуры. Стараются сначала производить загонку и разгонку примесей менее подвижных, и для сокращения времени процесса использовать более высокие температуры. Затем при меньших температурах загоняют и разгоняют более подвижные примеси. Это связано с быстрым падением коэффициента диффузии при понижении температуры. К примеру, в кремнии сначала при температуре до ~950 °C создают области р-типа легированные бором и только потом при температуре менее ~750 °C создают области n-типа, легированные фосфором. В случае других легирующих элементов и/или других матриц номиналы температур и порядок создания легированных областей может быть разным, но всегда при этом стараются придерживаться правила "понижения градуса". Создание дорожек всегда выполняется в завершающих циклах.

Помимо дифузионного легирования и разгонки могут применяться методы радиационной трансмутации кремния в алюминий и фосфор. При этом проникающая радиация помимо запуска реакций трансмутаций заметно повреждает кристаллическую решётку подложки. Легирование пластины идёт по всей площади и по всему объёму материала, распределение образующихся примесей определяется интенсивностью проникающего в толщу вещества излучения и поэтому подчиняется закону Бугера-Ламберта:

N=N0*e, где
N - концентрация примеси;

N0 - концентрация примеси на поверхности; a - коэффициент поглощения излучения; x - расстояние от облучаемой поверхности;

Для легирования обычно использовали слитки кремния не разрезанные на пластины. В этом случае профиль распределения примеси по диаметру пластины описывается транспозицией экспонент с максимумом на периферии пластины и минимумов в центре пластины. Этот метод имеет ограниченное применение для изготовления специальных приборов из высокоомного кремния.



Просмотров: 4830


<<< Модель Дила-Гроува
Подложка >>>