Химия - Полупроводниковые материалы - Легирование

28 февраля 2011


Оглавление:
1. Полупроводниковые материалы
2. Основные электрофизические свойства
3. Получение
4. Легирование
5. Структурные дефекты
6. Применение



Для получения полупроводниковых материалов электронного типа проводимости с изменяющейся в широких пределах концентрацией носителей заряда обычно используют донорные примеси, образующие «мелкие» энергетические уровни в запрещенной зоне вблизи дна зоны проводимости. Для полупроводниковых материалов дырочного типа проводимости аналогичная задача решается путём введения акцепторных примесей, образующих «мелкие» энергетические уровни в запрещенной зоне вблизи потолка валентной зоны. Такие примеси при комнатной температуре практически полностью ионизованы, так что их концентрация приблизительно равна концентрации носителей заряда, которая связана с подвижностями носителей соотношениями: sn = emnn для полупроводниковых материалов n-типа и sр = empp для полупроводниковых материалов р-типа. Для Ge и Si основными донорными легирующими примесями являются элементы V гр. периодической системы: Р, As, Sb, a акцепторными — элементы III гр.: В, Al, Ga. Для соединений типа AB — соотв. примеси элементов VI гр., а также Sn, и элементов II гр.. Элементы IV гр. в зависимости от условий получения кристаллов и эпитаксиальных слоев соед. типа AB могут проявлять как донорные, так и акцепторные св-ва. В соед. типа AB и AB поведение вводимых примесей сильно осложняется присутствием собств. точечных структурных дефектов. Необходимые тип и величина проводимости в них обычно достигаются прецизионным регулированием отклонения состава от стехиометрического, обеспечивающего заданную концентрацию определённого типа собств. точечных дефектов структуры в криcталлах.

Перечисленные выше легирующие примеси образуют, как правило, твёрдые р-ры замещения и обладают достаточно высокой растворимостью в широком интервале температур. Растворимость их носит ретроградный характер, при этом максимум растворимости приходится на температурный интервал 700—900 °C в Ge, 1200—1350 °C в Si и 1100—1200 °C в GaAs. Эти примеси являются малоэффективными центрами рекомбинации носителей и сравнительно слабо влияют на величину их времени жизни.

Примеси тяжелых и благородных металлов в большинстве полупроводниковых материалов образуют глубокие, часто многозарядные донорные или акцепторные уровни в запрещенной зоне, имеют большие сечения захвата носителей заряда и являются эффективными центрами рекомбинации носителей, приводя к значительному снижению их времени жизни. Эти примеси обладают малой и обычно ярко выраженной ретроградной растворимостью в полупроводниковых материалах и имеют очень малые значения коэффициента распределения между кристаллом и расплавом. Легирование ими производят в тех случаях, когда надо получить полупроводниковые материалы с малым временем жизни носителей или с высоким удельным электрическим сопротивлением, достигаемым компенсацией мелких энергетических уровней противоположной природы. Последнее часто используют для получения полуизолирующих кристаллов широкозонных полупроводниковых материалов типа AB; легирующими примесями служат Cr, Fe, Ni. Основные характеристики наиболее распространенных примесей в важнейших полупроводниковых материалах представлены в табл. 2.

Легирование полупроводниковых материалов обычно осуществляют непосредственно в процессах получения монокристаллов и эпитаксиальных структур. Примесь вводится в расплав либо в виде элемента, либо в виде сплава с данным полупроводниковым материалом. Часто легирование осуществляют из газовой фазы данного элемента или его легколетучих соединений. Это основной способ легирования в процессах эпитаксии при кристаллизации из газовой фазы. При молекулярно-пучковой эпитаксии источником легирующей добавки обычно является сама элементарная примесь. Расчет необходимого содержания легирующей примеси требует знания точной количественной связи между её концентрацией и заданными свойствами полупроводниковых материалов, а также основных физико-химических характеристик примеси: коэффициента распределения между газовой фазой и кристаллом, упругости паров и скорости испарения в широком интервале температур, растворимости в твёрдой фазе и т. п.

Одна из главных задач легирования — обеспечение равномерного распределения вводимой примеси в объёме кристалла и по толщине эпитаксиального слоя. При направленной кристаллизации из расплава равномерное распределение примеси по длине слитка достигается либо путём поддержания её постоянной концентрации в расплаве за счёт его подпитки из твёрдой, жидкой или газовой фазы, либо путём программированного изменения эффективного коэф. распределения примеси при соответствующем изменении параметров процесса роста. При зонной перекристаллизации для примесей с К << 1 обычно используют целевую загрузку примеси в начальную расплавленную зону с последующим её проходом через всю заготовку. Эффективный способ повышения объемной однородности монокристаллов — воздействие на массоперенос в расплаве наложением магнитного поля. Однородного распределения примеси по толщине слоя в процессе жидкофазной эпитаксии достигают кристаллизацией при постоянной температуре в условиях подпитки расплава, а при газофазной эпитаксии — поддержанием постоянной концентрации легирующей примеси в газовой фазе над подложкой на протяжении всего процесса наращивания.

Легирование полупроводниковых материалов может быть осуществлено также путём радиационного воздействия на кристалл, когда в результате ядерных реакций с участием собственных атомов вещества образуются электрически активные примеси. Наибольший интерес для радиационного легирования представляет воздействие тепловыми нейтронами, которые обладают большой проникающей способностью, что обеспечивает повышенную однородность легирования. Концентрация примесей, образующихся в результате нейтронного облучения, определяется соотношением: Nпр = N0siCiсрt, где N0 — кол-во атомов в единице объёма полупроводникового материала; si — сечение поглощения тепловых нейтронов; Ci — содержание соответствующего нуклида в естественной смеси; ср — плотность потока тепловых нейтронов; t — время облучения. Легирование облучением тепловыми нейтронами обеспечивает строго контролируемое введение заданных концентраций примеси и равномерное её распределение в объёме кристалла. Однако в процессе облучения в кристалле образуются радиационные дефекты, для устранения которых необходим последующий высокотемпературный отжиг. Кроме того, может появиться наведенная радиоактивность, требующая выдержки образцов после облучения. Легирование облучением тепловыми нейтронами обычно используют для получения однородно легированных фосфором монокристаллов Si с высоким удельным электрическим сопротивлением. В данном случае происходят следующие ядерные реакции:

{}^{30}\!Si^{31}Si{\beta \over 2.6h}\to^{31}\!P

При создании структур с p-n-переходами для полупроводниковых приборов широко используют легирование путём диффузионного введения примеси. Профиль концентрации примеси при диффузии описывается обычно функцией ошибок и имеет вид плавной кривой, характер которой определяется следующими факторами: температурой и временем проведения процесса; толщиной слоя, из которого осуществляется диффузия; концентрацией и формой нахождения примеси в источнике, а также её электрическим зарядом и возможностью взаимодействия с сопутствующими примесями и дефектами в полупроводниковом материале. Из-за малых значений коэффициента диффузии основных легирующих примесей диффузионное легирование обычно проводят при высоких температурах и в течение длительного времени; при этом оно, как правило, сопровождается генерированием в кристалле значительного количества структурных дефектов, в частности дислокаций. При диффузионном легировании возникают трудности в получении тонких легированных слоев и достаточно резких p-n-переходов.

Для получения тонких легированных слоев перспективны процессы ионного легирования, при которых введение примесных атомов в приповерхностный слой материала осуществляется путём бомбардировки соответствующими ионами с энергией от нескольких КэВ до нескольких МэВ. Возможность введения практически любой примеси в любой полупроводниковый материал, низкие рабочие температуры процесса, гибкое управление концентрацией и профилем распределения вводимой примеси, возможность легирования через диэлектрические покрытия с получением тонких, сильно легированных слоев обеспечили широкое распространение этого метода в технологии полупроводниковых приборов. Однако в процессе ионного легирования генерируются собственные точечные дефекты структуры, возникают области разупорядочения решётки, а при больших дозах — аморфизованные слои. Поэтому для получения качественных легированных слоев необходим последующий отжиг введенных дефектов. Отжиг проводят при температурах существенно более низких, чем при диффузии. После отжига свойства имплантированных слоев близки к свойствам материала, легированного до тех же концентраций традиционными методами.



Просмотров: 9257


<<< Полупроводник n-типа