Химия - Внутреннее сопротивление - Влияние внутреннего сопротивления на свойства двухполюсника

01 марта 2011


Оглавление:
1. Внутреннее сопротивление
2. Эквивалентная схема активного двухполюсника
3. Сопротивление и внутреннее сопротивление
4. Физические принципы
5. Влияние внутреннего сопротивления на свойства двухполюсника
6. Применение
7. Ограничения



Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления — это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.

Если к источнику с ЭДС генератора напряжения E и активным внутренним сопротивлением r подключена нагрузка с сопротивлением R, то ток, напряжение и мощность в нагрузке выражаются следующим образом:

I = \frac {E} {r + R}, \quad U_{R} = E \frac {R} {r + R}, \quad    P_{R} = E^2 \frac {R} {^2}.

Нахождение внутреннего сопротивления

Расчёт

Понятие расчёт применимо к схеме. Расчёт приведён для случая чисто активного внутреннего сопротивления.

Примечание: Строго говоря, любой реальный импеданс обладает некоторой реактивной составляющей, поскольку любой проводник имеет паразитную индуктивность и ёмкость. Когда мы говорим о чисто активном сопротивлении, то имеем в виду не реальную систему, а её эквивалентную схему, содержащую только резисторы: реактивность была отброшена как несущественная при переходе от реального устройства к его эквивалентной схеме. Если же реактивность существенна при рассмотрении реального устройства, то эквивалентная схема составляется с учётом этой реактивности. Более подробно смотри в статье «Эквивалентная схема».

Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:

  • ЭДС генератора напряжения U
  • Внутреннее сопротивление r

В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:

\begin{matrix}
    U_{out1} = U - r I_1 \\
    U_{out2} = U - r I_2
    \end{matrix}

где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2. Решая систему уравнений, находим искомые неизвестные:

r = \frac {U_{out1} - U_{out2}} {I_2 - I_1}, \quad
    U = U_{out1} + I_1 \frac {U_{out1} - U_{out2}} {I_2 - I_1} = U_{out1} + I_1 r

Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система записывается следующим образом:

\begin{matrix}
    U_{oc} = U - 0 \\
    0 = U - r I_{sc}
    \end{matrix}

где Uoc — выходное напряжение в режиме холостого хода, то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания, то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:

r = \frac {U_{oc}} {I_{sc}}, \quad
    U = U_{oc}

Таким образом, чтобы рассчитать внутреннее сопротивление и ЭДС эквивалентного генератора для двухполюсника, электрическая схема которого известна, необходимо:

  • Рассчитать выходное напряжение двухполюсника в режиме холостого хода
  • Рассчитать выходной ток двухполюсника в режиме короткого замыкания
  • На основании полученных значений найти r и U по формуле.

Измерение

Понятие измерение применимо к реальному устройству. Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение, которое принципиально не отличается от расчёта — также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.

Иногда применяется следующий простой способ измерения, не требующий вычислений:

  • Измеряется напряжение холостого хода
  • В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.

После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром — оно будет равно внутреннему сопротивлению двухполюсника.

Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.

Реактивное внутреннее сопротивление

Если эквивалентная схема двухполюсника содержит реактивные элементы — конденсаторы и/или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов — их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.

Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией, а не скалярным значением:

  • Можно искать различные параметры комплексного значения: модуль, аргумент, только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
  • Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путем измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.


Просмотров: 6788


<<< Вентиль (электротехника)
Вторичный источник электропитания >>>